antihydrogen: |Psi(r1,r2)|^2 (|Psi|^2)

«Мужчины хотят терраформировать Венеру, а женщины – Марс»
Брайан Мэй

После разработки метода отправки койпероида к внутренним планетам хочется применить обретенные воображаемые возможности. Терраформирование Марса не представляет интереса для высшей терраформологии по причине тривиальности данной задачи. Поэтому я разработал План терраформирования Венеры.

Читать много букв и цифр )

antihydrogen: |Psi(r1,r2)|^2 (|Psi|^2)
При терраформировании маловодных планет земной группы часто возникает необходимость доставки ледяных тел диаметром около 1000 км из пояса Койпера во внутреннюю часть Солнечной системы.


Обитатели купольного поселения на Марсе наблюдают за началом терраформирования

Решению данной актуальной проблемы в рамках энергетических возможностей современного человечества посвящена данная статья.


Read more... )
antihydrogen: |Psi(r1,r2)|^2 (|Psi|^2)

Читатели поста про освещение астероидов могли заметить, что консервативные подходы к зеркалостроению не позволяют развернуться по-настоящему широко. Ну, например, если хочется нам осветить весь астероид целиком, с интенсивностью много больше солнечной постоянной. Суммарная площадь зеркал тогда должна быть много больше площади астероида. Для этого потребуется очень много электроники, механики (гиродинов) и металлизированной пленки. А возможность хотя бы частичной локализации производства всего этого на самом астероиде выглядит крайне сомнительным.

Если нужен реальный размах и большие суммарные площади, стоит сделать еще один шаг и перейти к совсем мелким зеркалам. Ограничением снизу тут является дифракционный предел. Если мы хотим расходимость отраженного света не больше, чем расходимость излучения Солнца, получается, что зеркала должны быть диаметром порядка миллиметра.


Хотел поставить сюда фото какого-нибудь поп-певца в костюме с блестками, но, посмотрев гугл-картинки, решил, что не надо


Как же все эти многочисленные зеркальца ориентировать, спросите вы? Можно их намагнитить и ориентировать магнитным полем.
Как же предотвратить их слипание, опять-таки спросите вы, мой воображаемый внутренний собеседник? Можно их одноименно наэлектризовать.

Разберем по пунктам возникающие в таком подходе проблемы и их решения )
antihydrogen: |Psi(r1,r2)|^2 (|Psi|^2)
Наша традиционная рубрика «листая страницы старых отчетов»*. Проект космического ротоватора Skyhook, 2001г. (pdf, 6МБ, англ.яз.)

Skyhook (англ. расов. «небесный крюк») – это космический лифт на минималках. Большой спутник на низкой околоземной слабоэллиптической орбите с прикрепленным длинным тросом (с зацепом на конце).
Система вращается в плоскости своей орбиты. В результате, в момент, когда зацеп находится в наинизшей точке, его скорость вращения относительно центра масс системы вычитается из орбитальной, а когда в наивысшей – добавляется.

Read more... )
antihydrogen: |Psi(r1,r2)|^2 (|Psi|^2)

В качестве развития разговора про энергоснабжение базы на полюсе Луны хочется поговорить про материальные ресурсы, которые есть на дне вечно затененных кратеров.

Про то, какие там вещества, мы знаем благодаря самопожертвованию зонда LCROSS, который в 2009г. раздолбался о дно кратера Кабео в 100 км от южного полюса Луны, перед этим успев проанализировать состав облака, образовавшегося при падении его собственного разгонного блока за несколько минут до этого.

Так вот, в выброшенном материале обнаружилось около 150 кг воды и … 12 кг ртути. Содержание воды в грунте кратера – около 5 процентов по весу, а ртути – около 0.3%, то есть всего на порядок меньше. Результат несколько неожиданный, хотя и предсказывавшийся некоторыми теоретиками. Дело в том, что легкая молекула воды, попавшая на Луну, с большой долей вероятности улетучится в космос. Тяжелый атом ртути такой возможности не имеет, у него слишком маленькая скорость даже при дневных температурах, так что вся ртуть, выпарившаяся из поверхности Луны при излияниях лавы и падениях метеоритов, в конечном итоге оседает в холодных полярных кратерах.

По оценкам, суммарное количество воды в полярных кратерах – порядка миллиарда тонн. Ртути, соответственно, там должно быть десятки миллионов тонн. Для сравнения, выявленные ресурсы ртути на Земле – около 700 тысяч тонн, а годовая добыча – порядка тысячи тонн. Возникает, однако, вопрос– зачем вообще кому-то может понадобиться ртуть в таких неимоверных количествах?!

Вот, оказывается, зачем нацисты улетели на Луну! Ртуть же, как всем известно, используется в двигателях виман. (на всякий случай уточню – это шутка)

Read more... )
antihydrogen: |Psi(r1,r2)|^2 (|Psi|^2)
Есть такой критический аргумент на идеи заселения Марса генномодифицированными под его условия организмами: если это возможно, почему земная жизнь самостоятельно не заселила, например, сухие долины Мак-Мердо в Антарктиде, природные условия в которых все же полегче Марса? И даже в обычных, теплых земных пустынях, жизнь выживает с большим трудом.
Но если подойти к вопросу внимательно, то мнение о том, что в антарктических пустынях во всех отношениях приятней, чем в любой точке Марса, оказывается не таким уж и обоснованным.


Список преимуществ околоэкваториальных областей Марса по сравнению с антарктическими пустынями )

Очередное техзадание для генных инженеров )
antihydrogen: |Psi(r1,r2)|^2 (|Psi|^2)
Типа в продолжение темы космических аграрных сверхдержав. Наконец раскрыт состав сверкающих белых пятен на Церере.

Они состоят из соды. Миллиардов тонн кальцинированной соды (Na2CO3). Кроме того, там содержится некое соединение радикала аммония (NH4). Ранее (на самом деле еще задолго до полета зонда Dawn) выяснилось, что остальная, темная поверхность Цереры состоит из вещества с большим содержанием гидроксильных радикалов OH и того же аммония, скорее всего аммонизированной глины (например, сапонит (NH4)0.6Mg3Al0.6Si3.4O10(OH)2. Да, я с детства люблю химические формулы).

Проработка вопроса колонизации Цереры и посрамление неверующих в древнеримских богов )
Page generated Jul. 13th, 2025 10:17 pm
Powered by Dreamwidth Studios